Endotoxemie und COVID-19 – Eine gefährliche Allianz

Endotoxemia and COVID-19 – A Dangerous Alliance

Keywords | Summary | Correspondence | Literature


, , , ,


, , , ,


Obesity, type 2 diabetes, cardiovascular diseases, old age of patients and their ethnicity are the most important comorbidities in severe COVID-19. All these comorbidities are connected to endotoxemia – leakage of bacterial lipopolysaccharides (endotoxins) from the gut into the circulation. SARS-CoV-2 can directly interact with endotoxins through its S protein. Such interaction tremendously increases production of cytokines and thus the severity of COVID-19. Here we shortly summarize the results and discuss possible tests to determine the individuals at risk of severe COVID-19 as well as the corresponding treatment options.


Adipositas, Typ-2-Diabetes, Herz-Kreislauf- Erkrankungen, hohes Alter der Patienten und ihre Ethnizität sind die wichtigen Komorbiditäten für Entwicklung des schweren COVID-19. Alle diese Komorbiditäten sind mit Endotoxämie verbunden - dem Austreten von bakteriellen Lipopolysacchariden (Endotoxinen) aus dem Darm in den Kreislauf. SARS-CoV-2 kann über sein S-Protein direkt mit Endotoxinen interagieren. Eine solche Wechselwirkung kann die Produktion von Zytokinen und damit die Schwere von COVID-19 enorm erhöhen. Hier fassen wir die Ergebnisse kurz zusammen und diskutieren mögliche Tests zur Bestimmung der Personen mit einem Risiko für schweres COVID-19 sowie die entsprechenden Behandlungsoptionen.

Leider haben Sie sich nicht eingeloggt, um den Beitrag lesen zu können. Bitte loggen Sie sich ein oder beantragen Sie Ihre Zugangsberechtigung. Vielen Dank. Weitere Informationen finden Sie hier>


Dr. rer. nat. habil. Ilja L. Kruglikov
Wellcomet GmbH
Greschbachstr. 2-4
D-76229 Karlsruhe

Conflict of Interests

Ilja L. Kruglikov is the managing partner of Wellcomet GmbH. Wellcomet GmbH provided support in the form of salaries for Ilja L Kruglikov, but did not have any additional role in decision to publish or preparation of the manuscript. He declares no conflict of interest.


1. Kruglikov IL, Shah M, Scherer PE (2020) Obesity and diabetes as comorbidities for COVID-19: Underlying mechanisms and the role of viral–bacterial interactions. Elife. 9: e61330.
2. Kruglikov IL, Scherer PE (2020) The role of adipocytes and adipocyte-like cells in the severity of COVID-19 infections. Obesity. 2020. Doi:10.1002/oby.22856.
3. Kruglikov IL, Scherer PE (2020) Pre-existing and inducible endotoxemia as crucial contributors to severity of COVID-19 outcomes. PloS Pathogen. To be published.
4. Chu CM, Poon LL, Cheng VC, et al. (2004) Initial viral load and the outcomes of SARS. CMAJ 171(11): 1349-1352.
5. Petruk G, Puthia M, Petrlova J, et al. (2020) SARS-CoV-2 Spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity. bioRxiv. Doi:10.1101/2020.06.29.175844.
6. Koch RM, Diavatopoulos DA, Ferwerda G, et al. (2018) The endotoxin-induced pulmonary inflammatory response is enhanced during the acute phase of influenza infection. Intens Care Med Exp 6: 15.
7. van Reeth K, Nauwynck H, Pensaert M (2000) A potential role for tumour necrosis factor-α in synergy between porcine respiratory coronavirus and bacterial lipopolysaccharide in the induction of respiratory disease in pigs. J Med Microbiol 49: 613-20.
8. van Gucht S, Atanasova K, Barbé F, et al. (2006) Effect of porcine respiratory coronavirus infection on lipopolysaccharide recognition proteins and haptoglobin levels in the lungs. Microbes Infect 8: 1492-501.
9. Brenchley JM, Price DA, Schacker TW, et al. (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nature Med 12: 1365-71.
10. van de Weg CA, Koraka P, van Gorp EC, et al. (2012) Lipopolysaccharide levels are elevated in dengue virus infected patients and correlate with disease severity. J Clin Virol 53: 38-42.
11. Sirivongrangson P, Kulvichit W, Payungporn S, et al. (2020) Endotoxemia and circulating bacteriome in severe COVID-19 patients. medRxiv. Doi: 10.1101/2020.05.29.20109785.
12. Zhou S, Butler-Laporte G, Nakanishi T, et al. (2020) Circulating proteins influencing COVID-19 susceptibility and severity: a Mendelian randomization study. medRxiv. Doi: 10.1101/2020.10.13.20212092.
13. Hoel H, Heggelund L, Reikvam DH, et al. (2020) Elevated markers of gut leakage and inflammasome activation in COVID‐19 patients with cardiac involvement. J Inter Med Doi: 10.1111/joim.13178.
14. Chai X, Hu L, Zhang Y, et al. (2020) Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. bioRxiv. Doi:10.1101/2020.02.03.931766.
15. Zhang C, Shi L, Wang FS (2020) Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol 5: 428-30.
16. Crenshaw BJ, Gu L, Sims B, Matthews QL. (2018) Exosome biogenesis and biological function in response to viral infections. Open Virol J 12: 134-148.
17. Kumar A, Kim JH, Ranjan P, et al. (2017) Influenza virus exploits tunneling nanotubes for cell-to-cell spread. Sci Rep 7(1): 1-14. 18. Jansens RJ, Tishchenko A, Favoreel HW (2020) Bridging the gap: Virus long-distance spread via tunneling nanotubes. J Virol 94(8): 202120-19.
19. Chinnery HR, Pearlman E, McMenamin PG (2008) Cutting edge: Membrane nanotubes in vivo: a feature of MHC class II+ cells in the mouse cornea. J Immunol 180(9): 5779-5783.
20. Islam MN, Das SR, Emin MT, et al. (2012) Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18(5): 759-765.
21. Lee W, Ahn JH, Park HH, et al. (2020) COVID-19-activated SREBP2 disturbs cholesterol biosynthesis and leads to cytokine storm. Signal Transduct Targeted Ther 5: 186.
22. Pajkrt D, Doran JE, Koster F, et al. (1996) Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia. J Exp Med 184: 1601-1608.
23. Al-Attas OS, Al-Daghri NM, Al-Rubeaan K, et al. (2009) Changes in endotoxin levels in T2DM subjects on anti-diabetic therapies. Cardiovasc Diabetol 8: 20.
24. Lou E, Fujisawa S, Morozov A, et al. (2012) Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PloS One 7(3): e33093.



Passwort vergessen?