Übersichtsarbeit


Die Bedeutung von Polyenylphosphatidylcholin zur Verringerung von Fettpolstern in Desoxycholat-haltigen Injektionslösungen*

The role of polyenylphosphatidylcholine in reducing fat deposits in deoxycholate-containing injection solutions

Keywords | Summary | Correspondence | Literature


Keywords

, , , , , , ,

Schlüsselworte

, , , , , , ,

Summary

A growing number of patients are asking about injection lipolysis for aesthetic treatment instead of surgery. Deoxycholic acid (DC) with or without phosphatidylcholine (PC) is used to reduce the size and number of local fat accumulations and lipomas. DC induces inflammation and reduces adipocytes by necrosis; its benefit without PC is controversially discussed. First, the principle of fat breakdown by injection adipocytolysis (IL) is described and the peculiarity of polyenylphosphatidylcholine (PPC) from soybeans is characterized. In the following, the discourse summarizes the specific significance of PPC for the transport of fat from peripheral tissue via the bloodstream to the liver, for the activity of fat-degrading enzymes, and for mitochondrial performance in fat degradation. The interaction between DC-induced severe inflammation due to rapid adipocytic necrosis and mitochondrial dysfunction is discussed as a building block of reduced ß-fatty acid oxidation, while PPC improves the structural composition and function of mitochondria. In addition to a regulatory influence of PPC on DC-induced increased inflammation and the associated patient symptoms, PPC-induced apoptosis is assumed to be an additional mechanism of action in IL. Finally, PPC reduces the side effect profile of DC and its potential toxicity.

Zusammenfassung

Eine wachsende Zahl von Patienten fragt nach der Injektionslipolyse zur ästhetischen Behandlung anstelle chirurgischer Eingriffe. Die Desoxycholsäure (DC) mit oder ohne Phosphatidylcholin (PC) wird eingesetzt, um die Größe und Zahl lokaler Fettansammlungen und Lipome zu reduzieren. DC induziert Entzündungen und reduziert Adipozyten mittels Nekrose; ihr Nutzen ohne PC wird kontrovers diskutiert. Zuerst wird das Prinzip des Fettabbaus durch Injektionsadipozytolyse (IL) beschrieben und die Besonderheit des Polyenylphosphatidylcholins (PPC) aus der Sojabohne charakterisiert. Im Folgenden fasst der Diskurs die spezifische Bedeutung von PPC für den Transport von Fett aus dem peripheren Gewebe über die Blutbahn zur Leber, für die Aktivität Fett abbauender Enzyme und die mitochondriale Leistung beim Fettabbau zusammen. Die Wechselwirkung zwischen DC-induzierter starker Entzündung durch schnell ablaufende adipozytäre Nekrose und mitochondriale Dysfunktion wird als ein Baustein verringerter ß-Fettsäurenoxidation diskutiert, während PPC die strukturelle Zusammensetzung und Funktion der Mitochondrien verbessert. Über einen regulierenden Einfluss von PPC auf die durch DC induzierte verstärkte Entzündung und die damit verbundene Patientensymptomatik hinaus wird eine durch PPC ausgelöste Apoptose als zusätzlicher Wirkmechanismus bei der IL angenommen. Schließlich verringert PPC das Nebenwirkungsprofil von DC sowie seine potentielle Toxizität.


Leider haben Sie sich nicht eingeloggt, um den Beitrag lesen zu können. Bitte loggen Sie sich ein oder beantragen Sie Ihre Zugangsberechtigung. Vielen Dank. Weitere Informationen finden Sie hier>

Korrespondenz-Adresse

Adj. Prof. Dr. Dr. Karl-Josef Gundermann
GunderMannConsulting
Kornelimünsterstr.28
D-50933 Köln
gmc-gundermann@netcologne.de

Conflict of Interests

Keine finanziellen Interessen

Literatur

1. Rittes PG (2001) The use of phosphatidylcholine for correction of lower lid bulging due to prominent fat pads. Dermatol Surg 27(4): 391-392.
2. Rotunda AM, Suzuki H, Moy RL, Kolodney MS (2004) Detergent effects of sodium deoxycholate are a major feature of an injectable phosphatidylcholine formulation used for localized fat dissolution. Dermatol Surg 30(7): 1001-1008.
3. Klein SM, Schreml S, Nerlich M, Prantl L (2009) In vitro studies investigating the effect of subcutaneous phosphatidylcholine injections in the 3T3-L1 adipocyte model: lipolysis or lipid dissolution? Plast Reconstr Surg 124(2): 419-427.
4. Chung SJ, Chung HL, Ho SL, et. al. (2014) The role of phosphatidylcholine and deoxycholic acid in inflammation. Life Sci 108(2): 88-93.
5. Lieber CS, Robins SJ, Li J, DeCarli LM, et. al. (1994) Phosphatidylcholine protects against fibrosis and cirrhosis in the baboon, Gastroenterology 106(1): 152-159.
6. Desreumaux C, Dedonder E, Dewailly P, Sézille G, Fruchart JC (1979) Effects of unsaturated fatty acids in phospholipids on the in vitro activation of the lipoprotein lipase and the triglyceride lipase. Drug Res 29(10): 1581-1583.
7. Rosseneu M, Declercq B, Vandamme D, et. al. (1979) Influence of oral polyunsaturated and saturated phospholipid treatment on the lipid composition and fatty acid profile of chimpanzee lipoproteins. Atherosclerosis 32(2): 141-153.
8. Zierenberg O, Assmann G, Schmitz G, Rosseneu M (1981) Effect of polyenephosphatidylcholine on cholesterol uptake by human high density lipoprotein. Atherosclerosis 39(4): 527-542.
9. Spann W, Wolfram G, Zöllner N (1987) Effects of equal amounts of linoleic acid in orally administered, polyunsaturated phospholipids or in safflower oil on blood lipoproteins. Klin Wochenschr 65(20): 980-984.
10. Spann W, Wolfram G, Zöllner N (1987) Decrease of serum lipoproteins and increase in apolipoproteins A-I and A-II following oral administration of multiple unsaturated phospholipids. Observations on the effect of nutrition on the results. Klin Wochenschr 65(13): 590-595.
11. Jimenez MA, Scarino ML, Vignolini F, Mengheri E (1990) Evidence that polyunsaturated lecithin induces a reduction in plasma cholesterol level and favorable changes in lipoprotein composition in hypercholesterolemic rats. J Nutr 120(7): 659-667.
12. Verghese PB, Arrese EL, Soulages JL (2007) Stimulation of lipolysis enhances the rate of cholesterol efflux to HDL in adipocytes. Mol Cell Biochem 302(1-2): 241-248.
13. Kuntz E (1991) „Essential“ phospholipids in hepatology - 50 years of experimental and clinical experience. Z Gastroenterol 29(suppl 2): 7-13.
14. Chatterjee C, Young EK, Pussegoda KA, et. al. (2009) Hepatic high-density lipoprotein secretion regulates the mobilization of cell-surface hepatic lipase. Biochemistry 48(25): 5994-6001.
15. Oette K, Kühn G, Römer A, Niemann R, Gundermann K-J, Schumacher R (1995) The absorption of dilinoleoylphosphatidylcholine after oral administration. Drug Res 45(8): 875-879.
16. Gundermann KJ (1993). The „essential“ phospholipids as a membrane therapeutic. European Society of Biomedical Pharmacology, JotA press Szczecin, Poland.
17. Ellithorpe RA, Settineri R, Jacques B, Nicolson GL (2012) Lipid replacement therapy functional food with NT factor for reducing weight, girth, body mass, appetite, carvings for foods and fatigue while improving blood lipid profiles. Funct Food Health Dis 2(1): 11-24.
18. Nicolson GL, Ash ME (2014) Lipid Replacement Therapy: a natural medicine approach to replacing damaged lipids in cellular membranes and organelles and restoring function. Biochim Biophys Acta 1838(6): 1657-1679.
19. Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G (2012) Mitochondrial control of cellular life, stress, and death. Circ Res 111(9): 1198-1207.
20. Navder KP, Lieber CS (2002) Dilinoleoylphosphatidylcholine is responsible for the beneficial effects of polyenylphosphatidylcholine on ethanol-induced mitochondrial injury in rats. Biochem Biophys Res Commun 291(4): 1109-1112.
21. Duncan D, Rotunda AM (2011) Injectable therapies for localized fat loss: state of the art. Clin Plast Surg 38(3): 489-501, vii.
22. Li H, Lee JH, Kim SY, et. al. (2011) Phosphatidylcholine induces apoptosis of 3T3-L1 adipocytes. J Biomed Sci 18: 91.
23. Sakakima Y, Hayakawa A, Nagasaka T, Nakao A (2007) Prevention of hepatocarcinogenesis with phosphatidylcholine and menaquinone-4: in vitro and in vivo experiments. J Hepatol 47(1): 83-92.
24. Sakakima Y, Hayakawa A, Nakao A (2009) Phosphatidylcholine induces growth inhibition of hepatic cancer by apoptosis via death ligands. Hepato-Gastroenterol 56(90): 481-484.
25. Kim J-Y, Kwon M-S, Son J, Kang S-W (2017) Selective effect of phosphatidylcholine on the lysis of adipocytes. PLoS ONE 12(5): e0176722.
26. Jung TW, Kim ST, Lee JH, et. al. (2017) Phosphatidylcholine causes lipolysis and apoptosis through the tumor necrosis factor alpha-dependent pathway. Pharmacology 101(3-4): 111-119.
27. Nagasaka Y, Inai S, Osumi Y, Takaori S, Shimamoto K (1969) Acute and subacute toxicities of the essential phospholipids injection. Pharmacometrics 3(1): 45-56.
28. Hasengschwandtner F, Gundermann K-J (2013) Injection lipolysis with phosphatidylcholine and deoxycholate. Aesthet Surg J 33(7): 1071-1072.
29. Duncan DI (2013) Letter to the Editor – Response to “injection lipolysis with phosphatidylcholine and deoxycholate”. Aesthet Surg J 33(7): 1073-1075.
30. Salti G, Ghersetich I, Tantussi F, Bovani B, Lotti T (2008) Phosphatidylcholine and sodium deoxycholate in the treatment of localized fat: a double-blind, randomized study. Dermatol Surg 34(1): 60-66.
31. Duncan D, Rubin JP, Golitz L, et. al. (2009) Refinement of technique in injection lipolysis based on scientific studies and clinical evaluation. Clin Plast Surg 36(2): 195-209.
32. Palumbo P, Melchiorre E, La Torre C, et. al. (2010) Effects of phosphatidylcholine and sodium deoxycholate on human primary adipocytes and fresh human adipose tissue. Int J Immunopathol Pharmacol 23(2): 481-489.
33. El-Hariri LM, Marriott C, Martin GP (1992) The mitigating effects of phosphatidylcholines on bile salt- and lysophosphatidylcholine - induced membrane damage. J Pharm Pharmacol 44(8): 651-654.
34. Okazaki M, Hara I, Kobayashi T, Hayashi M (1980) Effect of phosphatidyl choline on the hemolytic activities of bile salts. J Jap Oil Chem Soc 29(10): 743-747.
35. Martin GP, Marriott C (1981) Membrane damage by bile salts: the protective function of phospholipids. J Pharm Pharmacol 33(12): 754-759.
36. Dial EJ, Dawson PA, Lichtenberger LM (2015) In vitro evidence that phosphatidylcholine protects against indomethacin/bile acid-induced injury to cells. Am J Physiol Gastrointest Liver Physiol 308(3): G217-G222.
37. Dial EJ, Darling RL, Lichtenberger LM (2008) Importance of biliary excretion of indomethacin in gastrointestinal and hepatic injury. J Gastroenterol Hepatol 23(8 Pt2): e384-e389.
38. Dial EJ, Rooijakkers SHM, Darling RL, Romero JJ, Lichtenberger LM (2008) Role of phosphatidylcholine saturation in preventing bile salt toxicity to gastrointestinal epithelia and membranes. J Gastroenterol Hepatol 23(3): 430-436.
39. Dial EJ, Doyen JR, Lichtenberger LM (2006) Phosphatidylcholine-associated nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit DNA synthesis and the growth of colon cancer cells in vitro. Cancer Chemother Pharmacol 57(3): 295-300.
40. Tan Y, Qi J, Lu Y, Hu F, Yin Z, Wu W (2013) Lecithin in mixed micelles attenuates the cytotoxicity of bile salts in Caco-2 cells. Toxicol in Vitro 27(2): 714-720.
41. Ikeda Y, Morita S-y, Terada T (2017) Cholesterol attenuates cytoprotective effects of phosphatidylcholine against bile salts. Sci Rep 7(1): 306.
42. Weidmann M, Lettko M, Prantl L. Injektionslipolyse. J Ästhet Chir DOI 10.1007/s12631-016-0047-2.
43. http://reference.medscape.com/drug/kybella-deoxycholic-acid-999993.
44. Kamalpour S, Leblanc Jr K (2016) Injection adipolysis: mechanisms, agents, and future directions. JCAD 9(12): 44-50.
45. Humphrey S, Sykes J, Kantor J, Bertucci V, et. al. (2016) 3rd. ATX-101 for reduction of submental fat: a phase III randomized controlled trial. J Am Acad Dermatol 75(4): 788-797.e7.
46. Tausch I, Kruglikov I (2015) The benefit of dual-frequency ultrasound in patients treated by injection lipolysis. J Clin Aesthet Dermatol 8(8): 42-46.

Ausgabe