Schlagwort-Archive: Fettgewebe

COSMEDICA Spezial: Spezialtagung Fett

Fettgewebe, Adipozyten das neueste aus Anatomie, Forschung und über nichtinvasive Fettentfernung
Industrieunabhängig, wissenschaftlich und neutral

Eine Veranstaltung der Klinik für Dermatologie, Allergologie und Venerologie Klinikum der Ruhr- Universität Bochum
Abteilung für ästhetisch operative Medizin und kosmetische Dermatologie
Leiter der Veranstaltung Dr. Klaus Hoffmann

Unkostenbeitrag zur Veranstaltung 20€/Person

Beginn: 09:00 – 14:00 Uhr

Begrüßung Dr.Klaus Hoffmann

 

09:00 – 10:30 Uhr   Dr. Ilja Kruglikov, Karlsruhe

Anatomie und Physiologie des Fettes: „Basic Sience – was eigentlich alle wissen müssten, aber leider nur wenige verstanden haben “

90 min (incl. 10 min Q + A)

 

10:30 – 11:15 Uhr   Dr. Matthias Sandhofer , Linz    

„Makroanatomie des Fettgewebes soweit für die ästhetische Behandlung bei der Fettentfernung relevant“

„Übersicht über Fettentfernungsmethoden in der Ästhetik“

45 min (incl. 5 min Q + A)

 

 11:15 – 11:35 Uhr Pause

 

Einführung in die Thematik
11:35-11:50

Dr.Klaus Hoffmann
Einführung in die nicht-invasive Fettentfernung: Wieso? Womit? Wie? 15 min

 

11:50 – 12:10 Uhr   Prof. Dr. Jörg Faulhaber, Schwäbisch Gmünd

„Injektions-Lipolyse“ 20 min (incl. 3 min Q + A)

 12:10 – 12:30 Uhr   Dr. Afschin Fatemi, Düsseldorf            

„Fokussierter Ultraschall zur Fettbeseitigung“ 20 min (incl. 3 min Q + A)

12:30 – 12:50 Uhr   Dr. Jens Diedrichson, Düsseldorf

“Kryoadipolyse (Kryolipolyse) zur Fettentfernung” 20 min (incl. 3 min Q + A)

12:50 – 13:10 Uhr   Dr. Niels Freitag, Hürth

„Diodenlaser zur Fettentfernung“ 20 min (incl. 3 min Q + A)

 

13:10 – 13:30 Uhr   Prof. Dr. Thomas Proebstle,   Mannheim

“Radiofrequenztherapie zur Fettentfernung” 20 min (incl. 3 min Q + A)

13:30 -14:00 Zusammenfassung und schriftliches Abschlusstestat

 

Die Veranstaltung ist rein wissenschaftlich orientiert. Es erfolgt keine Unterstützung oder Einflussnahme durch die Industrie bezüglich des Programms.

Wie das Gehirn Fettgewebe kontrolliert

Das Gehirn steuert nicht nur den Appetit, sondern auch den Energieverbrauch. Ein internationales Forscherteam hat unter Leitung der Universitäten Turin und Bonn nun den Signalweg entschlüsselt: Werden die Enzyme PI3Kbeta und PI3Kgamma gehemmt, wandeln sich energiespeichernde weiße Fettzellen in energieverzehrende braune Fettzellen um. Insgesamt wird dadurch lästiges Körperfett verbrannt. Die Forscher sehen darin einen interessanten Ansatzpunkt zur Behandlung der Fettleibigkeit. Ihre Ergebnisse stellen sie nun im renommierten Fachjournal „Science Signaling“ vor.

 

Wie viel Energie wir verbrauchen, hängt wesentlich vom Sympathikus ab, der die Stressreaktion ankurbelt. Diese Struktur des vegetativen Nervensystems bewirkt eine Aktivierung vieler Organe. Wird der Sympathikus erregt, kommen unter anderem Herztätigkeit, Durchblutung und Stoffwechsel in Schwung, der Energieverbrauch steigt. Das ist ein wichtiger Ansatzpunkt für die Behandlung der Fettleibigkeit: „Wenn wir den Energieverbrauch steigern können, reduziert sich bei gleichbleibender Nahrungszufuhr das Körpergewicht automatisch“, sagt Prof. Dr. Alexander Pfeifer vom Institut für Pharmakologie und Toxikologie des Universitätsklinikums Bonn.

 

Seit mehreren Jahren erforscht der Pharmakologe, wie der Körper überflüssiges Fett am besten selbstständig verbrennt. Prof. Pfeifers Ansatzpunkt ist die Umwandlung von unerwünschten weißen Fettzellen in braune: Aus weißen Fettzellen bestehen die lästigen „Speckröllchen“, die ein Zuviel an Nahrungsenergie speichern. Die braunen Fettzellen wandeln hingegen überflüssige Pfunde in Wärmeenergie um. Wenn also mehr braune Fettzellen vorhanden sind, wird insgesamt die Fettverbrennung des Körpers angeregt.

Ein zentraler Regler beeinflusst Appetit und Energieverbrauch

Ein Team unter Federführung von Wissenschaftlern aus Turin und Bonn hat nun unter Beteiligung von Forschern aus Rom und Padua herausgefunden, wie der Sympathikus den Energiehaushalt reguliert und für mehr Fettverbrennung sorgt. Eine wichtige Rolle spielt der Melanocortin 4-Rezeptor im zentralen Nervensystem, der als zentraler Regler sowohl den Appetit als auch den Energieverbrauch beeinflusst. „Ist die Signalkette des Melanocortin 4-Rezeptors gestört, kommt es sowohl bei Menschen als auch bei Mäusen zu starkem Übergewicht“, berichtet Prof. Pfeifer.

 

Der Melanocortin 4-Rezeptor-Signalweg steuert auch die Umwandlung der weißen in braune Fettzellen. So reagiert der Sympathikus zum Beispiel auf Kältestress: Droht der Körper über eine längere Zeit auszukühlen, werden Stresshormone freigesetzt. „Sie setzen wiederum eine Signalkette in Gang, die dafür sorgt, dass mehr braune Fettzellen gebildet werden. Diese Heizaggregate stabilisieren wiederum die Körpertemperatur“, nennt der Pharmakologe des Bonner Universitätsklinikums ein Beispiel.

Mäuse verloren in wenigen Tagen zehn Prozent ihrer Fettmasse

Das internationale Forscherteam konnte nun zeigen, dass die Enzyme PI3Kbeta und PI3Kgamma ganz wesentlich an der Steuerung durch den Melanocortin 4-Rezeptor beteiligt sind. In Mäusen schalteten die Wissenschaftler die Gene für diese beiden Enzyme stumm. In der Folge kam es zu einer Überaktivierung des Sympathikus. Dasselbe passierte, wenn PI3Kbeta und PI3Kgamma mit Wirkstoffen gehemmt wurden. Eine höhere Fettverbrennung war die Folge, weil viele weiße Fettzellen in energiezehrende braune umgewandelt wurden. Die Mäuse verloren binnen zehn Tagen rund zehn Prozent ihrer Fettmasse.

 

„Diese Ergebnisse legen nahe, dass die Hemmung von PI3Kbeta und PI3Kgamma ein interessanter Ansatzpunkt für die Behandlung der Fettleibigkeit sein kann“, folgert Prof. Pfeifer. Diese Ergebnisse seien bislang jedoch ausschließlich im Tiermodell bestätigt. Von einer Anwendung beim Menschen sei man noch weit entfernt.

 

Publikation: Combined inhibition of PI3Kbeta and PI3Kgamma reduces fat mass by enhancing alpha-MSH-dependent sympathetic drive, Fachjournal „Science Signaling“, DOI: 10.1126/scisignal.2005485

 

Kontakt:
Prof. Dr. Alexander Pfeifer
Institut für Pharmakologie und Toxikologie
des Universitätsklinikums Bonn
Tel.: +49-(0)228/28751300
E-Mail: alexander.pfeifer(at)uni-bonn.de

 

Johannes Seiler Dezernat 8 – Hochschulkommunikation
Rheinische Friedrich-Wilhelms-Universität Bonn

Adenosin lässt das „Hüftgold“ schmelzen

Die Zahl der Übergewichtigen nimmt weltweit stark zu – damit steigt auch das Risiko, in der Folge etwa an Herzinfarkt, Schlaganfall, Diabetes oder Alzheimer zu erkranken. Viele träumen deshalb von einer effizienten Methode, Pfunde loszuwerden. Diesem Ziel ist nun ein internationales Forscherteam unter Federführung von Professor Alexander Pfeifer vom Universitätsklinikum Bonn einen Schritt näher gekommen. Das körpereigene Adenosin aktiviert braunes Fett und „bräunt“ weißes Fett. Die Ergebnisse sind nun im renommierten Fachjournal „Nature“ veröffentlicht.

 

 

„Fett ist nicht gleich Fett“, sagt Prof. Dr. Alexander Pfeifer vom Institut für Pharmakologie und Toxikologie des Universitätsklinikums Bonn. Der Mensch trägt zwei verschiedene Arten von Fett in sich: Unerwünschte weiße Fettzellen, aus denen zum Beispiel das lästige „Hüftgold“ besteht. Außerdem gibt es noch braune Fettzellen, die als erwünschte Heizaggregate überschüssige Energie in Wärme verwandeln. „Wenn es uns gelingt, braune Fettzellen zu aktivieren oder weiße in braune Fettzellen umzuwandeln, können möglicherweise überflüssige Pfunde abgeschmolzen werden“, berichtet der Pharmakologe.

 

 

Die Arbeitsgruppe von Prof. Pfeifer hat zusammen mit einem internationalen Forscherteam aus Schweden, Dänemark, Finnland sowie dem Helmholtz-Zentrum Dresden-Rossendorf und der Universität Düsseldorf einen neuen Ansatzpunkt gefunden: das Adenosin. Es wird bei Stressreaktionen ausgeschüttet. Eine wichtige Rolle spielt dabei der Adenosinrezeptor A2A.

 

 

Aktivierung von braunem Fett durch Adenosin

„Dockt in den braunen Fettzellen das Adenosin an diesen Rezeptor an, wird die Fettverbrennung stark stimuliert“, berichtet Dr. Thorsten Gnad aus Prof. Pfeifer´s Team. Dass Adenosin braunes Fett aktiviert, galt vorher als ausgeschlossen. Es gab mehrere Versuche mit Ratten und Hamstern, wobei sich zeigte, dass Adenosin braunes Fett blockiert. Das Team der Universität Bonn ließ sich von diesen Ergebnissen nicht beirren. Anhand von braunen Fettzellen, die Menschen bei Operationen entfernt wurden, vollzogen die Wissenschaftler den Signalweg der Fettaktivierung über das Adenosin nach. Dabei zeigte sich, dass Ratten und Hamster in dieser Hinsicht anders reagieren als der Mensch. „Das braune Fett von Mäusen hingegen verhält sich genauso wie das unserer eigenen Spezies“, fasst Prof. Pfeifer zusammen.

 

 

Adenosin bräunt weißes Fett

Die Forscher untersuchten auch, ob weiße Fettzellen durch Adenosin in braune Fettzellen umgewandelt („gebräunt“) werden können. Weiße Fettzellen lassen sich im Gegensatz zu den braunen normalerweise nicht zum Schmelzen des „Hüftgolds“ bewegen, weil ihnen die dazu erforderlichen A2A-Rezeptoren fehlen. Deshalb transferierte das Wissenschaftlerteam in Mäusen das Gen für den Rezeptor aus braunen Fettzellen auf weiße. Daraufhin verhalten sie sich wie braune Zellen – und die Fettverbrennung wird angekurbelt.

 

 

Klinische Anwendung ist noch weit entfernt

Den Forschern der Universität Bonn ist es erstmals gelungen, die Bedeutung des Adenosins für braune Zellen von Mäusen und des Menschen nachzuvollziehen. „Durch die Gabe von Adenosin-ähnlichen Substanzen nahmen die Mäuse tatsächlich ab“, berichtet Prof. Pfeifer. Es seien jedoch in diesem Zusammenhang noch viele Fragen zu untersuchen. Eine klinische Anwendung sei deshalb noch weit entfernt.

 

 

Publikation: Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors, Fachjournal “Nature”, DOI: 10.1038/nature13816

 

 

Kontakt:
Prof. Dr. Alexander Pfeifer
Institut für Pharmakologie und Toxikologie
des Universitätsklinikums Bonn
Tel. 0228/28751300
E-Mail: alexander.pfeifer(at)uni-bonn.de

 

Johannes Seiler Dezernat 8 – Hochschulkommunikation, Rheinische Friedrich-Wilhelms-Universität Bonn

Forscher identifizieren Gen zur Fetteinlagerung

Der Würzburger Forscher Daniel Kraus hat mit internationalen Kollegen Fetteinlagerungsgen identifiziert, das großen Einfluss auf den Aufbau von Körperfett hat. Die Wissenschaftler hemmten es bei Mäusen und die Tiere wurden – trotz unveränderter Fütterung – schlanker und zeigten keine Nebenwirkungen. Über ihre Arbeit berichteten die Mediziner im Wissenschaftsmagazin Nature.

 

 

In den zurückliegenden Jahrzehnten haben sich die Ernährungsgewohnheiten der Menschen in den westlichen Gesellschaften grundlegend verändert. Der Verzehr von Fleisch ist von einem gelegentlichen Akt zu einer Alltäglichkeit geworden, Fette und energiereiche Kohlenhydrate stehen immer zur Verfügung. Zugleich wird bei physisch immer weniger fordernden Berufen und Alltagssituationen aber so wenig Energie benötigt wie nie zuvor.

Die überschüssige Energie aus der Nahrung wird in Form von Fettgewebe eingelagert. Diese Einlagerungsfunktion war besonders zu der Zeit von Bedeutung, als Lebensmittel nicht so einfach über Märkte zu bekommen waren und auch Hungerperioden an der Tagesordnung waren. Heute aber wird diese Funktion zu einer Art Bumerang: Viele Menschen leiden unter der übermäßigen Anlage der Energiespeicher – ernährungsbedingter Fettleibigkeit – und entwickeln in der Folge sogar noch weitere Krankheitsbilder.

 

NNMT spielt wesentliche Rolle bei der „Fettanhäufung“

Eine wesentliche Rolle bei der „Anhäufung“ von Fettgewebe spielt das Enzym NNMT (Nicotinamid-N-Methyltransferase). Daniel Kraus, Mediziner am Universitätsklinikum Würzburg, und sein Kollege Qin Yang wurden auf das NNMT-Gen aufmerksam, als sie während ihrer Zeit als Postdoktoranden bei Professorin Barbara B. Kahn in Boston Mäuse mit gentechnisch verändertem Fettgewebe miteinander verglichen. Sie stellten fest, dass NNMT im Fettgewebe „übergewichtiger“ Mäuse vermehrt vorkommt als bei „schlanken“ Mäusen.

Die Forscher unterdrückten daraufhin NNMT bei fettleibigen Mäusen und prüften, wie sich das auf den gesamten Stoffwechsel des Vierbeiners auswirkt. Sie untersuchten mit einer speziellen Magnetresonanzanalyse die Gewebezusammensetzung im Körper der lebenden Mäuse und stellten fest: Die Menge an Fettgewebe ging zurück. Und dies, obwohl die Mäuse nicht weniger fraßen und sich nicht mehr bewegten. Auch in den Exkrementen fand sich nicht mehr Fett als bei den Tieren der Kontrollgruppe.

Stattdessen fanden Kraus und Yang Hinweise dafür, dass NNMT den Verbrauch von energiereichen Molekülen im Fettgewebe reguliert. Abbauprodukte solcher Energieträger schieden die behandelten Mäuse vermehrt mit dem Urin aus. Schädliche Nebenwirkungen konnten bei dem Versuch nicht nachgewiesen werden. Im Gegenteil: „Die Leber- und Nierenwerte waren normal. Die Verfettung der Leber ging bei adipösen Mäusen sogar zurück“, sagt Kraus.

Daniel Kraus hat mit dieser Entdeckung jedoch noch nicht das Problem der ernährungsbedingten Fettleibigkeit gelöst. „Wir können das noch lange nicht therapeutisch ausnutzen“, sagt er.

 

Pharmahersteller interessiert

Obwohl der Stoffwechsel der Maus dem des Menschen ähnelt, müsse in der Zukunft dazu weiter geforscht werden. Kraus selbst wird dazu in einem nächsten Schritt Fettgewebe von an Übergewicht leidenden Patienten vom Universitätsklinikum Würzburg unter die Lupe nehmen.

Den Forscher interessieren an seiner Arbeit, die von der Deutschen Forschungsgemeinschaft (DFG) unterstützt wird, die neuen Erkenntnisse in Sachen Energieumsatz. Das wirtschaftliche Potenzial eines Medikamentes gegen Fettleibigkeit ist für ihn weniger reizvoll. „Spannend ist für mich, dass wir dem Konzept der Regulation von Energie weiter auf die Spur gekommen sind“, sagt Kraus.

Er ist sich aber bewusst, dass Pharmahersteller an diesem Bereich sehr interessiert sind: „Wem es als Erstem gelänge, eine vermeintlich so einfache Lösung für ernährungsbedingt Fettleibige auf den Markt zu bringen, der kann damit vermutlich größte Umsätze erzielen“, sagt Kraus.

Es gibt bereits erste Hinweise aus anderen Studien, dass die Entwicklung eines solchen Medikamentes möglich sein könnte. „Aber in den vergangenen 20 Jahren hat es immer wieder solche vermeintlichen ‚Aha-Erlebnisse‘ gegeben“, sagt Kraus.

„Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity“
Daniel Kraus, Qin Yang, Dong Kong, Alexander S. Banks, Lin Zhang, Joseph T. Rodgers, Eija Pirinen, Thomas C. Pulinilkunni, Fengying Gong, Ya-chin Wang, Yana Cen, Anthony A. Sauve, John M. Asara, Odile D. Peroni, Brett P. Monia, Sanjay Bhanot, Leena Alhonen, Pere Puigserver & Barbara B. Kahn.
Nature. 2014 Apr 10;508(7495):258-62. doi: 10.1038/nature13198.

Kontakt:
Daniel Kraus
E-Mail: daniel.kraus@uni-wuerzburg.de
Abteilung für Nephrologie
Medizinische Klinik und Poliklinik I
Universitätsklinikum Würzburg – ZIM – Zentrum Innere Medizin

Weitere Informationen:
http://www.uni-wuerzburg.de Webseite der Universität Würzburg
http://www.ukw.de Homepage der Nephrologischen Abteilung der Universität Würzburg
Marco Bosch Presse- und Öffentlichkeitsarbeit
Julius-Maximilians-Universität Würzburg

Anmelden

Passwort vergessen?